A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure.

نویسندگان

  • Kyung Min Kim
  • Byung Joon Choi
  • Min Hwan Lee
  • Gun Hwan Kim
  • Seul Ji Song
  • Jun Yeong Seok
  • Jeong Ho Yoon
  • Seungwu Han
  • Cheol Seong Hwang
چکیده

The detailed mechanism of electronic bipolar resistance switching (BRS) in the Pt/TiO(2)/Pt structure was examined. The conduction mechanism analysis showed that the trap-free and trap-mediated space-charge-limited conduction (SCLC) governs the low and high resistance state of BRS, respectively. The SCLC was confirmed by fitting the current-voltage characteristics of low and high resistance states at various temperatures. The BRS behavior originated from the asymmetric potential barrier for electrons escaping from, and trapping into, the trap sites with respect to the bias polarity. This asymmetric potential barrier was formed at the interface between the trap layer and trap-free layer. The detailed parameters such as trap density, and trap layer and trap-free layer thicknesses in the electronic BRS were evaluated. This showed that the degradation in the switching performance could be understood from the decrease and modified distribution of the trap densities in the trap layer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic bipolar resistance switching in an anti-serially connected Pt/TiO2/Pt structure for improved reliability.

Electronic bipolar resistive switching and its degradation in the Pt/TiO2/Pt structure were studied. The electronic bipolar switching was induced from the asymmetric trap distribution of the structure under its unipolar reset state. The imbalanced migration of oxygen accompanied by electronic switching significantly degrades switching endurance. Instead, the anti-serial connection of Pt/TiO2/Pt...

متن کامل

Bipolar Resistive Switching Characteristics of HfO2/TiO2/HfO2 Trilayer-Structure RRAM Devices on Pt and TiN-Coated Substrates Fabricated by Atomic Layer Deposition

The HfO2/TiO2/HfO2 trilayer-structure resistive random access memory (RRAM) devices have been fabricated on Pt- and TiN-coated Si substrates with Pt top electrodes by atomic layer deposition (ALD). The effect of the bottom electrodes of Pt and TiN on the resistive switching properties of trilayer-structure units has been investigated. Both Pt/HfO2/TiO2/HfO2/Pt and Pt/HfO2/TiO2/HfO2/TiN exhibit ...

متن کامل

Investigation of resistive switching in anodized titanium dioxide thin films

In this work, TiO2 nanostructures were grown on titanium thin films by electrochemical anodizing method. The bipolar resistive switching effect has been observed in Pt/TiO2/Ti device. Resistive switching characteristics indicated the TiO2 nanotubes are one of the potential materials for nonvolatile memory applications.  Increasing anodizing duration will increase nanotube lengths which itself c...

متن کامل

Resistance switching behavior of atomic layer deposited SrTiO3 film through possible formation of Sr2Ti6O13 or Sr1Ti11O20 phases

Identification of microstructural evolution of nanoscale conducting phase, such as conducting filament (CF), in many resistance switching (RS) devices is a crucial factor to unambiguously understand the electrical behaviours of the RS-based electronic devices. Among the diverse RS material systems, oxide-based redox system comprises the major category of these intriguing electronic devices, whe...

متن کامل

Bipolar resistive switching of chromium oxide for resistive random access memory

This study investigates the resistance switching characteristics of Cr2O3-based resistance random access memory (RRAM) with Pt/Cr2O3/TiN and Pt/Cr2O3/Pt structures. Only devices with Pt/Cr2O3/TiN structure exhibit bipolar switching behavior after the forming process because TiN was able to work as an effective oxygen reservoir but Pt was not. Oxygen migration between Cr2O3 and TiN was observed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 22 25  شماره 

صفحات  -

تاریخ انتشار 2011